Adjunctions of Quasi-Functors Between DG-Categories
نویسندگان
چکیده
منابع مشابه
Homotopy Coherent Adjunctions of Quasi-categories
We show that an adjoint functor between quasi-categories may be extended to a simplicially enriched functor whose domain is an explicitly presented “homotopy coherent adjunction”. This enriched functor encapsulates both the coherent monad and the coherent comonad generated by the adjunction. Furthermore, because its domain is cofibrant, this data can be used to construct explicit quasi-categori...
متن کاملAdjunctions Between Categories of Domains
In this paper we show that there is no left adjoint to the inclusion functor from the full subcategory C 0 of Scott domains (i.e., consistently complete ! algebraic cpo's) to SFP, the category of SFP-objects and Scott-continuous maps. We also show there is no left adjoint to the inclusion functor from C 0 to any larger category of cpo's which contains a simple ve-element domain. As a corollary,...
متن کاملFunctors between Reedy Model Categories of Diagrams
If D is a Reedy category and M is a model category, the category M of D-diagrams in M is a model category under the Reedy model category structure. If C → D is a Reedy functor between Reedy categories, then there is an induced functor of diagram categories M → M. Our main result is a characterization of the Reedy functors C → D that induce right or left Quillen functors M → M for every model ca...
متن کاملOn Gr-functors between Gr-categories
Each Gr-category (or categorical group) is Gr-equivalent to a Grcategory of type (Π, A, ξ), where Π is a group, A is a Π-module and ξ is a 3-cocycle of Π, with coefficients in A. In this paper, first we show that each Gr-functor induces one between Gr-categories of type (Π, C). Then we give results on the existence of Gr-functor and the classification of Gr-functors by cohomology groups H(Π, C)...
متن کاملExponentiable Functors Between Quantaloid-Enriched Categories
Exponentiable functors between quantaloid-enriched categories are characterized in elementary terms. The proof goes as follows: the elementary conditions on a given functor translate into existence statements for certain adjoints that obey some lax commutativity; this, in turn, is precisely what is needed to prove the existence of partial products with that functor; so that the functor’s expone...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Categorical Structures
سال: 2016
ISSN: 0927-2852,1572-9095
DOI: 10.1007/s10485-016-9470-y